Heavy rains and mudslides in the Central Andes of Peru: March 23, 2015

Victoria Calle Montes UNALM- PERU

José Manuel Galvez NOAA - EEUU

South American Desk - April 2015

Heavy rains and mudslides in the Central Andes of Peru during March 23 2015.

Objective

Identify a synoptic model and key meteorological parameters associated with the heavy rains in the Central Andes of Peru during March 22 and 23 2015, which triggered several mudslides.

1.- Introduction

Unusually heavy rains occurred in the Central Andes of Peru during the 22-23 of March 2015. These rains lead to several mudslides that lead to 8 dead, 6 missing, 25 injured and 250 families affected/displaced half-hour away from Lima.

Mudslides In the Andean Region:

Huayco ó huaico comes from the quechua "wayqu", which means creek.

A huayco is a violent flood where a large amount of material from the slopes is collected and transported by water down the creek into the valleys.

Soil type

Barren. Mixture of sand, clay and rocks.

Mudslides in Chosica (population 170 000 hab) Afternoon of March 23, 2015

Warning Communication Process

SHARE ELVE

Weather Service warns "Civil Defense" (Emergency Management)

March 20, 2015 3 days in advance

SENAMHI informs that the rains over the western slopes of the Andes will continue, being the most intense over the Lima region. Furthermore, isolated hailstorms and strong winds are expected in areas over 3500m (~11500ft)

Civil Defense warns majors

2.- Materials

GFS Data March 18-23, 2015

Satellite Imagery (CPTEC, RAMSDIS)

Weather station data from Peru (Weather Service or Servicio Nacional de Meteorología e Hidrología – SENAMHI).

Wingridds

3.- Variable Analysis (Forecast Funnel Method)

- Low-level convergence (CB)
- Upper level divergence (UD)
- Humidity: PWAT , r, HR, SSTs (indirectly)
- Stability: GDI, K
- Trigger: ciclo diurno (breeze convergence)

4.- Results

24-hr Rainfall March 23 Ending Mar 24 7am LST

Sea Surface Temperature warming

High temperatures and dewpoints in Lima and increased rainfall in Chosica

Lluvias

en

IR4 Satellite March 22, 2015

IR4 Satellite March 23, 2015

Low-level convergence migrated towards the coast (west) during rainy days

Seccion: XSCT -14 82 -11 74.5						
	Corrida	Corrida	Corrida	Corrida	Corrida	
	1deg	.25deg	.25deg	.25deg	.25deg	
Analisis de Convergencia Nivel Bajo 1pm	Mar1800	Mar1800z	Mar1900z	Mar2000z	Mar2100z	
18-mar	-5	-16				-16.00
19-mar	-5	-12	-16			-14.00
20-mar	-3	-16	-15	-16		-15.67
21-mar	-4	-16	-12	-12	-12	-13.00
22-mar	-3	-24	-12	-20	-25	-20.25
23-mar		-16	-12	-16	-16	-15.00
24-mar			-16	-12		-14.00
				-8		-8.00
Posicion del eje de convergencia						
18-mar		-76.3				-76.30
19-mar		-76.4	-76.25			-76.33
20-mar		-76.4	-76.4	-76.3		-76.37
21-mar		-75.5	-76.4	-76.3	- 70.4	-76.40
22-mar		-76.5	-76.45	-76.5	-76.5	-76.49
23-mar		-76.4	-76.45	-76.4	-76.45	-76.43
24-mar			-76.4	-76.3		-76.35
Profundidad				-76.25		-76.25

Normal

Rainy Period

Mixing ratio and winds (700-850 hPa layer)

Mar 22 7pm LST

Mar 23 7pm LST

Tropical moisture front, well defined in the 700-850 hPa layer was the essential contribution to the heavy rains in Chosica. The front passed around 7am LST, 10 hours before the event.

PWAT 22 y 23 de marzo

Normal

GDI (Galvez-Davison Stability Index)

Increase in 800 hPa Relative Humidity in 24hrs

Increase in RH at cloud layer

Conclusions

The tropical moisture front in the 700-850 hPa layer was the main predictor in the generation of heavy rains in the Chosica region. The front passed at 7am LST of March 23rd 2015, 10 hours before the event.

Mixing ratio and wind in the 700-850 hPa layer Mar 23 7pm LST

Relevant factors

Warm ocean generates warm, moist and unstable air mass over the coast and western slopes

Moisture front: advection of moist air mass from the NNW with peak at 800 hPa r₈₀₀>11g/kg

Weak (<10kt) wind regime over coast/slopes favors diurnal breeze and moisture convergence.

Inversion at ~650hPa reduces mixing with dry air aloft and stimulates saturation in/over the BL

Clouds: Ns with isolated embeded Cb

Role of the Soil

Several days with rain on soil with NO vegetation cover:

- (1) Weakened the soil making it prone to mudslides
- (2) Generated soil moisture, local enhancement of water vapor often

Muchas Gracias!

Thank you!